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Abstract

The classic Frankignoul-Hasselmann hypothesis for sea surface temperature (SST) variability

of an oceanic mixed layer assumes that the surface heat flux can be simply parameterized

as noise induced by atmospheric variability plus a linear temperature relaxation rate. It

is suggested here, however, that rapid fluctuations in this rate, as might be expected for

example due to gustiness of the sea surface winds, are large enough that they cannot be

ignored. Such fluctuations cannot be fully modeled by noise that is independent of the state

of the SST anomaly itself. Rather, they require the inclusion of a state-dependent (that

is, multiplicative) noise term, which can be expected to impact both persistence and the

relative occurrence of high amplitude anomalies.

As a test of this hypothesis, daily observations at several Ocean Weather Stations (OWS)

are examined. Significant skewness and kurtosis of the distributions of SST anomalies is

found, which is shown to be consistent with a multiplicative noise model. The observed

wintertime SST distribution at OWS P is reproduced using a single column variable depth

mixed layer model; the resulting non-Gaussianity is found to be largely due to the state-

dependence of rapidly-varying (effectively stochastic) sensible and latent heat flux anomalies.

Our model for the non-Gaussianity of anomalous SST variability (counterintuitively)

implies that the multiplicative noise increases the persistence, predictability, and variance

of midlatitude SST anomalies. The effect is strongest on annual and longer timescales and

may, therefore, be important to understand and model interannual and interdecadal SST

and related climate variability.
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1 Introduction

The typical timescale of atmospheric variability is considerably shorter than the typical

timescale of sea surface temperature (SST) variability. As a result, the effect of atmospheric

forcing of SST anomalies T ′
o can be represented by a simple stochastic model of the oceanic

mixed layer,

dT ′
o

dt
= −λ T ′

o + ξ (1)

(Hasselmann 1976; Frankignoul and Hasselmann 1977, hereafter FH), where λ is a rate coef-

ficient representing the transfer of heat from the slowly evolving mixed layer heat anomaly,

and ξ is Gaussian white-noise representing surface heat fluxes due to rapidly varying weather

fluctuations. The e-folding timescale of SST variability is thus τ = 1/λ. Such a simple uni-

variate linear system has been surprisingly successful in describing much of the variability

of anomalous midlatitude SSTs (e.g., Frankignoul and Hasselmann 1977; Reynolds 1978;

Blaauboer et al. 1982; Hall and Manabe 1997).

This classical stochastic view implies that SST anomalies obey a Gaussian distribution.

Indeed, monthly averaged SST anomalies are nearly Gaussian. Yet we might expect them to

be Gaussian because of the Central Limit Theorem (e.g., Gardiner 2004; Paul and Baschnagel

1999), i.e., the Gaussianity may be due solely to the averaging procedure and not to any

particular dynamical process. In fact, as we will show, observations from Ocean Weather

Stations (OWSs) reveal that Probability Distribution Functions (PDFs) of daily averaged

SST anomalies are actually significantly non-Gaussian.

The presence of non-Gaussianity suggests the possible importance of nonlinearity to the
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evolution of SST anomalies, appearing to contradict the FH paradigm. However, if this

nonlinearity also acts on a very short timescale, then the FH paradigm may only require a

small adjustment. Suppose the linear coefficient in (1) contains a rapidly varying component;

that is, λ = 〈λ〉+λ′, where 〈λ〉 is constant but λ′ varies rapidly; note that the time mean of λ′

is zero. Such rapid fluctuations in the feedback coefficient might be expected, for example, if

it has a dependence upon not just a constant or slowly varying wind speed, but also upon the

gustiness of the winds. Then we might also approximate λ′ as white-noise. However, unlike

the noise term ξ which is independent of T ′
o, a stochastically fluctuating λ′ would result in a

second noise term λ′T ′
o which depends upon the SST anomaly itself. This state-dependent

noise is also known as multiplicative noise. A system driven with such multiplicative noise

has two characteristics of interest here. First, in general it will have a non-Gaussian PDF,

even though the deterministic portion of (1) is linear. Second, although the autocorrelation

function for T ′
o remains an exponential, the multiplicative noise acts to effectively increase

the time scale τ through a phenomenon known as noise-induced drift, which occurs because

the time mean of the multiplicative noise term, 〈λ′T ′
o〉, is not zero. For a mathematically

more advanced discussion, see, for example, Gardiner (2004); Kloeden and Platen (1992),

and see Sardeshmukh et al. (2001) and Penland (2003a,b) for related discussions focusing on

climate dynamics.

In this paper we present a simple univariate stochastic model of midlatitude SST anoma-

lies that accounts for rapid fluctuations in surface heat fluxes, such as might result from

the gustiness of sea surface winds. The parameters of this model are determined from OWS

data whose non-Gaussian PDFs are described in section 2. In section 3 we justify a noise
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component of λ through a scale analysis of wind-driven surface heat flux, as parameterized

by simple heat flux bulk formulae. This hypothesis is then explored and quantified using

two complementary approaches. First, in section 4 we use both linear and nonlinear inverse

methods to estimate stochastic models from data. The nonlinear model is additionally used

to examine the impact of multiplicative noise on the persistence and low-frequency variabil-

ity of SST anomalies. Second, in section 5 we show that the non-Gaussianity of observed

anomalous SST variability during the extended winter season at OWS P can be reproduced

by a single column variable-depth mixed layer model, and that it is the multiplicative noise

nature of the surface heat fluxes that is responsible for this non-Gaussianity. Finally, section

6 provides a summary and discussion.

2 PDFs of daily Averaged SST

To re-examine the effect of stochastic weather fluctuations on anomalous SSTs, we first

analyze the PDFs of daily averaged SST anomalies obtained from Ocean Weather Station

records [see Dinsmore (1996) for a brief history of Ocean Weather Stations and Diaz et al.

(1987) for climatological summaries]. Table 1 lists the stations analyzed, their locations,

and the time periods of data availability. We restrict our study to locations where univariate

linear stochastic theory provides a good fit to abserved anomalous SST variability: P, N,

and V in the North Pacific, and K in the North Atlantic (Hall and Manabe 1997).
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2.1 Data

Daily SST anomalies were determined as follows. First, daily averages were calculated from

the raw 3-hourly data. Then the climatological monthly averages were estimated. A daily

climatology was constructed by linear interpolation using these monthly averages as base

points. Finally, daily anomalies were calculated by subtracting the daily climatology from

the mean daily values.

We analyzed the resulting full-year SST anomaly timeseries. To account for possible

effects of the annual cycle we analyzed extended summer (May-October) and extended winter

(November-April) subsets as well.

2.2 Probability Density Functions

PDFs are a useful measure to examine the dynamics of stochastic systems. In particular,

deviations from Gaussianity, or anomalous statistics, can shed light on the underlying dy-

namics (e.g., Peinke et al. 2004; Sura et al. 2005). PDFs can be estimated using different

techniques. The easiest way is to calculate the normalized histogram by binning the data.

This is a non-parametric method because no assumptions are made of the functional form

of the PDF. Non-parametric methods are normally used as a reliable first-order PDF esti-

mate when there is no reasonable physical justification for a particular distribution. For a

parametric estimation of a PDF one specifies the functional form of the PDF in advance,

and the parameters of the PDF are then determined by a Maximum Likelihood Estimate

(MLE). The parametric distribution we use is the skew t-distribution, a skewed and kurtosed
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alternative to the normal distribution which is capable of adapting very closely to skewed

and heavy-tailed data (Azzalini and Capitanio 2003; Jones and Faddy 2003). We use both

methods here.

In the following section, all discussed deviations from Gaussianity are significant at least

at the 95% confidence level, with large amplitude deviations significant at the 99% confidence

level, as determined by the Monte-Carlo method employed in, e.g., Sura et al. (2005).

2.3 Ocean Weather Station P

Of all the Ocean Weather Stations, OWS P may be best suited for linear univariate stochastic

theory (Hall and Manabe 1997). It has a long high-quality record, the El Niño-Southern

Oscillation (ENSO) signal is relatively weak there (e.g., Alexander et al. 2002), and it is

located far from strong currents.

The PDFs of full-year daily SST anomalies, related Gaussian distributions, and anomalies

(deviations from Gaussianity) at OWS P are shown in Fig. 1. In Fig. 1a the PDF (steps) is

calculated as a normalized histogram, whereas in Fig. 1b the PDF (solid line) is calculated

as a MLE to a skew t-distribution. Comparison in either case to the related Gaussian

distribution (dashed lines) shows that the PDF has a strong peak, weak flanks, and heavy

tails relative to a Gaussian distribution (i.e., the PDF is kurtosed). Furthermore, the PDF is

slightly skewed. The skew t-distribution captures all the important features of the histogram:

the strong peak, weak flanks, heavy-tails, and the skew.
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2.4 Other Ocean Weather Stations

Hall and Manabe (1997) have shown that while over most of the world ocean anomalous

SST variability is consistent with the simple FH model, there are a few regions where this

stochastic theory cannot be applied. Near strong boundary currents like the Gulf Stream and

the Kuroshio (and both their extensions, the North Atlantic and the North Pacific currents)

mesoscale eddies enhance SST variability at high-frequencies. Furthermore, in the northern

North Atlantic, large scale variations of the thermohaline ocean circulation are responsible

for much of the low-frequency variations. And, of course, regions with sea-ice are excluded

as well.

After analyzing data from the remaining stations, we find that, in agreement with Hall

and Manabe (1997), there are four stations with long records where the autocorrelation

functions (and the spectra) can be modeled with univariate red noise: P, N, and V in the

North Pacific, and K in the North Atlantic. These stations are all in midlatitudes and far

away from strong currents. The PDFs (full year, extended summer and winter) of SST

anomalies at these stations are shown in Fig. 2 (we only show the skew t-distributions; the

histograms have a similiar shape). The PDFs at OWSs K and N are qualitatively similar

to the PDF at OWS P (Fig. 1), although their deviations from Gaussianity are somewhat

larger. OWS V shows a slightly different behavior: the PDFs have similar kurtosis as the

other stations, but the skew has the opposite sign. In all cases, similar deviations from

Gaussianity is present in both the winter and summer subsets.

To summarize, the non-Gaussianity at OWS P is not unique but a general feature at
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OWSs where linear stochastic theory can be applied. Furthermore, the non-Gaussianity does

not appear strongly seasonally dependent, suggesting that the full-year daily SST anomaly

record can be used to study anomalous SST variability [as in Hall and Manabe (1997)].

3 Extending the Frankingnoul-Hasselmann Null Hy-

pothesis

In the previous section, we examined ocean stations whose daily SST data are consistent with

univariate stochastic theory and yet obey a non-Gaussian distribution. This immediately

suggests the possible importance of multiplicative noise. As an initial exploration of this

issue, we next consider a straightforward extension of the classic FH stochastic SST anomaly

model, in which we add a stochastic process resulting from rapidly fluctuating wind speeds

to the constant feedback coefficient.

3.1 The basic mixed layer equations

The simplest model for midlatitude SSTs assumes a well mixed and horizontally homoge-

neous layer of constant depth h and temperature To in contact with the overlying atmosphere,

but isolated from the layers below the thermocline. For the sake of simplicity, all effects of

horizontal advection and salinity are ignored as well. Then the local heat budget equation

can be written as (see, e.g. Frankignoul and Hasselmann 1977)

dTo

dt
=

f(To, Ta, q, |U|, R)

h
, (2)
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where f denotes the total heat flux through the air-sea interface, which depends on the SST

To, air temperature Ta, humidity q, wind speed |U|, and the net radiation R. Neglecting the

radiation flux, the bulk formula for the heat flux f is

f ≈ ρaCa

ρwCw

CH(1 + B)(Ta − To)|U| , (3)

where CH is the bulk transfer coefficient of the latent and sensible heat flux, B is the inverse

Bowen ratio (ratio of latent to sensible heat flux), ρw and ρa are the densities of sea-water

and air, and Cw and Ca are the specific heats (at constant pressure) of sea-water and air.

For small temperature anomalies ∆To and ∆Ta a Taylor expansion of the heat flux f

yields

d

dt
(〈To〉+ ∆To) =

1

h

[
f(〈To〉, 〈Ta〉) +

∂f

∂To

∣∣∣
〈To〉

∆To +
∂f

∂Ta

∣∣∣
〈Ta〉

∆Ta

]
. (4)

Assuming that the evolution of the mean temperature 〈To〉 is balanced by the time mean

of f(〈To〉, 〈Ta〉) = 〈f〉(〈To〉, 〈Ta〉) + f ′(〈To〉, 〈Ta〉), that is d〈To〉/dt = 〈f〉(〈To〉, 〈Ta〉)/h, and

defining ∆To ≡ T ′
o and ∆Ta ≡ T ′

a the equation for the SST anomaly T ′
o becomes:

dT ′
o

dt
=

f ′(〈To〉, 〈Ta〉)
h

+
1

h

∂f

∂To

∣∣∣
〈To〉

T ′
o +

1

h

∂f

∂Ta

∣∣∣
〈Ta〉

T ′
a . (5)

FH ignored variations in Ta. To include atmospheric variability in a simple manner, we

note that on long time scales T ′
a equilibrates with T ′

o (e.g., Barsugli and Battisti 1998); even

on daily time scales, at OWS P the correlation between T ′
a and T ′

o is 0.67. A simple relation

for atmospheric variability is thus the regression equation

T ′
a = αT ′

o + ξ′ (6)

9



where typically the remainder ξ′ represents rapidly varying (on a 2-3 day timescale) noise.

Then

dT ′
o

dt
=

f ′(〈To〉, 〈Ta〉)
h

+
(1− α)

h

∂f

∂To

∣∣∣
〈To〉

T ′
o −

1

h

∂f

∂To

∣∣∣
〈To〉

ξ′ . (7)

As in FH variations in the inverse Bowen ratio B and the transfer coefficient CH are

ignored. That is, we assume that heat flux variability is only due to wind speed variability.

This is a reasonable approximation in our simple framework, since heat flux anomalies are

strongly related to wind speed anomalies (e.g., Ronca and Battisti 1997; Alexander and Scott

1997). This is not a perfect approximation, of course; as we will see in section 5, variations in

these terms have an impact on the skewness, and by combining the sensible and latent heat

fluxes together we obscure the latent heat flux dependence upon the dewpoint temperature.

Furthermore, we neglect the correlation between T ′
a and T ′

o (i.e., α ≡ 0). The important

point is that these simplifications allow the following derivation to clearly establish the

fundamental nature of the multiplicative noise.

The wind speed is split into a mean 〈|U|〉 and a deviation from the mean |U|′, so that

the mean heat flux 〈f〉 depends upon 〈|U|〉 and the heat flux deviation f ′ depends upon

|U|′. Then the anomalous heat flux f ′ and the heat flux derivative ∂f/∂To become

f ′(〈To〉, 〈Ta〉) =
ρaCa

ρwCw

CH(1 + B)(〈Ta〉 − 〈To〉)|U|′ (8)

and

∂f

∂To

∣∣∣
〈To〉

≡
〈

∂f

∂To

〉
+

(
∂f

∂To

)′
= − ρaCa

ρwCw

CH(1 + B) [〈|U|〉+ |U|′] , (9)

where ∂f/∂Tois split into a mean heat flux derivative 〈∂f/∂To〉 = −(ρaCa)(ρwCw)−1CH(1 +
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B)〈|U|〉 and an anomalous heat flux derivative (∂f/∂To)
′ = −(ρaCa)(ρwCw)−1CH(1+B)|U|′.

Note that f ′ is a function of only |U|′, whereas ∂f/∂To is a function of both 〈|U|〉 and |U|′.

3.2 Scaling the equation

To see if a multiplicative noise term is necessary, we first scale the terms in Eqs. (8) and

(9). Using typical parameters for the conditions at OWS P (see Table 2) we obtain f ′/h =

O(0.2 K day−1), h−1〈∂f/∂To〉T ′
o = O(0.1 K day−1), and h−1(∂f/∂To)

′ T ′
o = O(0.05 K day−1).

Note that the relative importance of h−1〈∂f/∂To〉T ′
o and h−1(∂f/∂To)

′ T ′
o is solely determined

by the ratio of the mean wind speed 〈|U|〉 to the strength of the wind speed anomaly |U|′.

As this ratio is only about 2 to 1 throughout the midlatitude storm tracks (e.g., Monahan

2005b) the effect of wind fluctuations on SST anomalies may come through the variability of

not only the anomalous heat flux f ′ but also the anomalous heat flux derivative (∂f/∂To)
′.

3.3 Neglecting the anomalous heat flux derivative (∂f/∂To)
′:

Modeling SST anomalies with additive noise

In the stochastic SST model introduced by FH, the anomalous heat flux derivative was

neglected. The heat flux term f ′/h [see Eq. (8)] is parameterized as Gaussian (additive)

white-noise η [scaled by the parameter σ; see Eq. (10) below]. In other words, it is assumed

that |U|′ can be approximated by Gaussian white-noise. This assumption is reasonable since

daily wind speed anomalies are almost uncorrelated and have a distribution that is nearly

Gaussian. For example, at OWS P wind speed anomalies are almost uncorrelated after
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2–3 days (Fig. 3a) and deviations from Gaussianity are relatively small (Fig. 3b). Then,

treating the term h−1∂f/∂To [see Eq. (9)] as a constant parameter λ = h−1〈∂f/∂To〉 =

−h−1(ρaCa)(ρwCw)−1CH(1+B)〈|U|〉, FH derived the familiar stochastic differential equation

(SDE):

dT ′
o

dt
= −λ T ′

o + σ η , (10)

with the Gaussian white-noise η satisfying 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t − t′). This is

the SDE of a univariate Ornstein-Uhlenbeck process, also called damped Brownian motion.

When λ is determined from observations, Eq. (10) results in the familiar red-noise spectrum

of T ′
o in close agreement with observations. However, the PDF of an Ornstein-Uhlenbeck

process is strictly Gaussian and, therefore, not consistent with the results of section 2. Thus,

the classical stochastic model of midlatitude SST variability should be improved to explain

the non-Gaussianity of observed SST anomalies. Here we improve the stochastic model by

including the anomalous heat flux derivative (∂f/∂To)
′.

3.4 Including the anomalous heat flux derivative (∂f/∂To)
′:

Modeling SST anomalies with multiplicative noise

The scaling analysis of section 3.2 suggests that h−1∂f/∂To should not be a constant pa-

rameter. Moreover, to be consistent |U|′ should be a stochastic process both in Eqs. (8) and

(9). That is, the anomalous heat flux derivative (∂f/∂To)
′ is parameterized as multiplicative

noise, since it is the product of a slowly varying quantity (T ′
o) and a rapidly varying quantity
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(|U|′). Therefore, we replace the FH model (1) with the following SDE for T ′
o:

dT ′
o

dt
= −λT ′

o +
√

2M T ′
o ηM +

√
2D ηD (11)

with Gaussian white-noise satisfying

〈ηM(t)ηM(t′)〉 = δ(t− t′) , 〈ηD(t)ηD(t′)〉 = δ(t− t′) . (12)

D and M are constants governing the strength of the additive and multiplicative noise terms.

Note that the actual noise amplitudes are
√

2D and
√

2M ; this definition is solely used for

later mathematical convenience.

As was discussed in the introduction, multiplicative noise acts to lengthen the observed

decorrelation timescale of T ′
o. The autocorrelation function 〈T ′

o(t)T
′
o(s)〉 is given by (Sak-

aguchi 2001; Anteneodo and Tsallis 2003)

〈T ′
o(t)T

′
o(s)〉 =

D

λ− 2M
exp (−(λ−M)|t− s|) . (13)

As is the case with purely additive noise (M = 0), the autocorrelation decays exponentially.

However, the decorrelation timescale is now τ = (λ−M)−1 = λ−1
eff . That is, the noise-induced

drift is M , so that stronger multiplicative noise increases the persistence of midlatitude SST

anomalies. The spectrum of SST anomalies S(ω) can be calculated by Fourier-transforming

the autocorrelation function (13):

S(ω) =
D(λ−M)

(λ− 2M)

(
ω2 + (λ−M)2

)−1
. (14)

In addition, the multiplicative noise acts to produce a non-Gaussian stationary PDF of

T ′
o:

p(T ′
o) = Θ(D + MT ′

o
2
)−Π (15)
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(Sakaguchi 2001; Anteneodo and Tsallis 2003) where Π = (λeff + 2M) /2M . The normal-

ization constant Θ is given by:

Θ =
M1/2DΠ−1/2

β(1/2, Π− 1/2)
=

M1/2DΠ−1/2Γ(Π)

Γ(1/2)Γ(Π− 1/2)
(16)

where β(x, y) is the beta-function, and Γ(x) is the gamma-function:

β(x, y) = Γ(x)Γ(y)/Γ(x + y). Having p(T ′
o) the moments of T ′

o can be calculated.

The first (mean) and the third moment (skew) are zero because the problem is symmetric

with respect to T ′
o = 0. The second moment (variance) is

〈T ′
o
2〉 ≡

∞∫
−∞

T ′
o
2
p dT ′

o =
D

λeff −M
, (17)

and the fourth moment (kurtosis) is

〈T ′
o
4〉 ≡

∞∫
−∞

T ′
o
4
p dT ′

o =
3D2

λ2
eff − 4λeffM + 3M2

. (18)

4 Inverse Stochastic Models of SST Anomalies

In the following we determine stochastic models for anomalous SST variability from data

using inverse methods. First (in section 4.1) we estimate the parameters of the linear multi-

plicative noise model [Eq. (11)]. Second (in section 4.3) we estimate a more general nonlinear

stochastic model from data to test the validity of the linear model. Furthermore, we use the

nonlinear model to explore the impact of multiplicative noise on the predictability and the

low-frequency variability of SST anomalies.
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4.1 Linear inverse models

The parameters in Eq. (11) can be estimated from data by first determining the variance

〈T ′
o
2〉, the kurtosis 〈T ′

o
4〉, and the effective damping λeff from the observed autocorrela-

tion function. Then M and D can be found from the two nonlinear (quadratic) equations

[Eqs. (17) and (18)]. The parameters of the linear inverse models are summarized in Table 3.

The corresponding distributions p(T ′
o) as defined by Eqs. (15) and (16) for full-year,

extended winter and summer conditions at OWS P are shown in Fig. 4. The amplitudes

of the anomalies (deviations from Gaussianity) are slightly smaller than the amplitudes of

the observed anomalies (in particular for extended summer conditions). The basic structure,

however, is captured by the simple linear inverse models: the multiplicative noise causes the

distributions to have a more pronounced peak, weaker flanks, and heavier tails compared

to a Gaussian distribution. That is, the multiplicative noise increases the kurtosis of the

distribution. Thus, this simple model is able to explain the basic (neglecting the skew)

non-Gaussian structure of the observed PDF (Fig. 1).

The effect of multiplicative noise in the linear stochastic models upon the spectrum of

SST variability [Eq. (14)] at OWS P is shown in Fig. 5. Fig. 5a show two spectra for full-

year conditions: the spectrum with pure additive is indicated by the dashed line, and the

spectrum with multiplicative noise included is indicated by the solid line. Multiplicative

noise enhances low-frequency SST variability of anomalous SST variability by about 20%

(even as the total noise variance increases only by about 8%). The corresponding information

for extended summer and winter (together with full-year) conditions is presented in Fig. 5b:
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it shows the spectral densities ratios of the multiplicative noise models to the additive noise

models. It can be seen that multiplicative noise generally enhances SST variability for all

frequencies. The effect is strongest during winter, weakest during summer, and somewhere

in between for all-year conditions.

4.2 Testing the multiplicative white-noise model

When we fit Eq. (11) to the data, we are making two assumptions: that the forcing is

white, and that it is multiplicative. Neither, however, need be true to get a good linear

fit of the autocorrelation function. These assumptions can be tested in a straightforward

manner. The effective drift λeff estimated from data can be used to ’predict’ T ′
o after a

time step ∆t: T ′
o(t + ∆t) = −λeff T ′

o Obs(t) ∆t + T ′
o Obs(t). If the white-noise assumption

is correct the difference between the observed value T ′
o Obs(t + ∆t) and the predicted value

T ′
o(t+∆t) should equal the white-noise forcing. The autocorrelation functions of the residuals

r ≡ T ′
o Obs(t + ∆t) − T ′

o(t + ∆t) for full-year, summer, and winter conditions are shown in

Fig. 6a. The residuals are almost uncorrelated after one time step (one day), justifying the

white-noise approximation.

The PDFs of the residuals (Fig. 6b) are very close to an exponential distribution (straight

line in logarithmic plot) and are thus highly non-Gaussian. To test whether this residual

represents multiplicative white-noise or merely non-Gaussian additive noise, we executed

numerical experiments in which the model (10), with observed effective dampings λeff and

additive noise whose distribution is the same as the residual, is integrated forward for 500000

days. The resulting PDFs differ from that in Figs. 1, 2, 4 and are nearly Gaussian.
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This result is not entirely surprising, since a simple scaling argument also shows that non-

Gaussian additive noise alone has no significant effect on the distribution of SST anomalies.

Since λ ∼ [O(0.02) day−1] while f ′/h ∼ [O(0.2) K day−1], dT ′
o/dt ≈ f ′/h so T ′

o ≈
∑

j fj/h ∆t,

and the Central Limit Theorem applies. In other words, for sufficiently small λ, non-Gaussian

additive noise will result in a Gaussian distribution of SST anomalies T ′
o. Thus, the non-

Gaussianity of the observed PDF implies that the residual represents multiplicative noise.

4.3 A nonlinear stochastic inverse model

In the previous sections we showed that the linear model can explain the observed kurtosis

of SST anomalies, but it cannot explain the observed skew. In this section we consider the

most general (nondimensional) form of the univariate SDE that governs the evolution of SST

anomalies,

dT ′
o

dt
= A(T ′

o) + B(T ′
o)η , (19)

where A(T ′
o) represents all slow processes and B(T ′

o)η represents the stochastic approxima-

tion to the fast nonlinear processes. The Gaussian white-noise η satisfies 〈η(t)〉 = 0 and

〈η(t)η(t′)〉 = δ(t− t′). Note that the deterministic dynamics in A(T ′
o) are no longer required

to be linear and that B(T ′
o)η now represents both multiplicative and additive noise. As in the

linear case, the multiplicative noise produces a drift, such that Aeff = A+(1/2) B (∂B/∂T ′
o)

(e.g., Gardiner 2004).

Because the individual records from the OWSs are too short to accurately determine the

nonlinear stochastic model of anomalous SST variability, we concatenated the normalized

records from stations where stochastic theory is applicable, and where the skew has the same
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sign: K in the North Atlantic, and P, N in the North Pacific (see the discussion in section 2).

Note that the concatenated timeseries is nondimensional. As before, we analyzed full-year,

extended winter, and extended summer conditions. However, in the concatenated record the

differences between the full-year and the extended winter and summer seasons are minor,

much less than those shown in section 4.1. For this reason we only present the full-year

record in the remainder of this section.

The resulting PDF of the concatenated (full-year) record is shown in Fig. 7. As in the

case of OWS P (Fig. 1), the PDF is calculated both as a normalized histogram (Fig. 7a) and

as a MLE to a skew t-distribution (Fig. 7b). The PDF of the concatenated record has the

same structure as the record from OWS P: it is clearly kurtosed and slightly skewed. Note,

however, that the deviations from Gaussianity are larger for the concatenated record than

for the OWS P record.

The nonlinear model can also be estimated from the data. The effective drift Aeff (T
′
o) is

found by using its finite-difference definition

Aeff (T
′
o) = lim

∆t→0

1

∆t
〈T ′

o(t + ∆t)− T ′
o〉|T ′

o(t)=T ′
o

(20)

(e.g., Siegert et al. 1998; Friedrich et al. 2000; Gradǐsek et al. 2000; Sura and Barsugli 2002;

Sura 2003; Sura and Gille 2003); the result is shown in Fig. 8a (the error bars indicate

± one standard error). Note that Aeff (T
′
o) is almost linear and acts to damp anomalous

SSTs. Therefore, a linear approximation is justified, as shown by the solid line: Aeff (T
′
o) ≈

−0.023 T ′
o. We next use the PDF p(T ′

o) and the effective drift Aeff (T
′
o) to determine B(T ′

o)
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from the Fokker-Planck equation (see Sura et al. 2005) corresponding to (19):

B(T ′
o) =

 2

p(T ′
o)

T ′
o∫

−∞

[Aeff (x
′)p(x′)] dx′


1/2

. (21)

The estimated noise B(T ′
o) for the SST anomalies is shown by the solid line in Fig. 8b; the

dotted line in Fig. 8b shows the optimal linear multiplicative noise obtained by fitting the

variance and the kurtosis of the PDF (Fig. 7) to the linear SDE (11). The linear multiplicative

noise qualitatively captures the main features of B(T ′
o). However, there is clearly a nonlinear

component to B(T ′
o), since B(T ′

o) is not symmetric with respect to T ′
o = 0, and B(T ′

o)

increases more rapidly on the right hand side of the minimum at T ′
o ≈ −0.8 than on the left

hand side (Fig. 8b). Therefore, the noise is stronger for positive SST anomalies than it is for

negative anomalies, resulting in the observed skew. Note that the weak departure of A(T ′
o)

from linearity contributes very little to the observed skew and kurtosis.

We next use the effective drift Aeff (T
′
o) and the noise B(T ′

o) to determine the real de-

terministic drift A(T ′
o). Shown in Fig. 9 are the noise-induced drift (1/2) B (∂B/∂T ′

o), the

real deterministic drift A, and the effective drift Aeff . Note that the noise-induced drift is

almost linear and, as in the linear system discussed in the previous section, acts to undamp

the system. That is, the results of the linear model are confirmed by the nonlinear model.

4.4 Predictability

We might expect that, due to the increase in persistence that results from the noise-induced

drift, SST anomalies driven by multiplicative noise might be potentially more predictable

than those driven by additive noise. The situation may, however, be complicated by increased
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uncertainty resulting from the multiplicative noise itself. To assess this issue we compute

a simple measure of predictability, the anomaly correlation of an ensemble mean perfect

forecast with observations, which can be written as:

ρ∞(τ) =
S(τ)√

S(τ)2 + 1
(22)

where S(τ) ≡ s(τ)/σ(τ) is the signal-to-noise ratio and τ is the forecast lead (e.g., Sardesh-

mukh et al. 2000; Newman et al. 2003b). Here the signal s(τ) is the ensemble mean, and

the noise σ(τ) is the ensemble standard deviation. ρ∞(τ) is the expected skill of a perfect

model in which the signal is determined as the mean of an infinite-member ensemble [see

Sardeshmukh et al. (2000) or Newman et al. (2003b) for a more detailed discussion].

Two different stochastic models are compared the full multiplicative noise model (19),

and a second ”additive noise” model containing the same deterministic term A(T ′
o) but

in which only additive noise, scaled to yield the (unit) variance of the concatenated SST

anomaly timeseries, is used. That is, the variances of SST anomalies are the same in both

the additive and the multiplicative noise models. Fig. 10 shows the forecast lead at which

expected forecast skill ρ∞ falls below 0.5, as a function of initial condition for the additive

(dashed line) and the multiplicative noise model (solid line). In this simple example, multi-

plicative noise increases the lead time of skillful forecast from large negative SST anomalies

(larger than one standard deviation) by about 5–10 days. Skill from positive anomalies is

actually slightly worse, as in general skill from positive anomalies is lower than skill of similar

amplitude negative anomalies. This result suggests that the anomalous heat flux derivative,

parameterized as multiplicative noise, has a significant impact on the predictability of SST

anomalies.
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4.5 Spectra

Finally, the impact of multiplicative noise upon the low-frequency variability of SST anoma-

lies is demonstrated by numerically integrating two different stochastic models, with and

without multiplicative noise. Both models have the same deterministic dynamics A(T ′
o), but

the additive noise model uses pure additive noise (the strength of the additive noise is given

by the minimum of B(T ′
o)), whereas the multiplicative noise model uses the full multiplica-

tive noise term B(T ′
o) (Fig. 8b). The spectra of both models are shown in Fig. 11. The

spectrum with pure additive noise is indicated by the dashed line, and the spectrum with

multiplicative noise included is indicated by the solid line.

Multiplicative noise enhances the low-frequency variability of anomalous SST variability

by about 100% (even as the total noise variance increases only by about 30%). The linear

model for OWS P showed that the multiplicative noise enhanced the low-frequency variability

of anomalous SST variability by about 20%, whereas the total noise variance increased by

about 8% (Fig. 5). Why is there such a difference between OWS P and the concatenated

record? The non-Gaussianity of the concatenated SST anomaly record is larger than the

non-Gaussianity at OWS P, resulting in correspondingly stronger multiplicative noise. As

confirmed by a linearization of A(T ′
o) and B(T ′

o), the spectral difference between OWS P and

the concatenated record is mainly due to the different strengths of the multiplicative noises

and not to nonlinear effects. That means, the linear approximations of A(T ′
o) and B(T ′

o) are

very good representations (neglecting the skew) of the underlying physical processes. Again,

the results of the linear model are confirmed by the nonlinear model.
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5 Mixed Layer Ocean Model

In section 3 we used a simple conceptual model, along the lines of the original FH study, to

propose that the non-Gaussianity of observed SST variability is the consequence of multi-

plicative noise in the surface heat flux. As a test of this hypothesis, we showed that daily SST

observations at several OWS are consistent with a multiplicative noise model; in particular,

the observed non-Gaussianity is primarily the result of rapidly decorrelating nonlinearity

(i.e., multiplicative noise), whereas the deterministic term (A(T ′
o); i.e., the slowly evolving

dynamics) is effectively linear. Of course, the drawback of inverse stochastic modeling is that

while it can clarify the dynamical form of a system, it does not always clarify which physical

processes are dominant. Also, the form of B(T ′
o) is not linear (as our simple conceptual

model had suggested), and other terms in the mixed layer heat budget, such as horizon-

tal advection, entrainment, and mixed-layer depth variability, might also contribute to the

non-Gaussianity. In addition, the effects of pronounced seasonality both in the mixed layer

depth and the atmospheric noise may have been obscured by the extended seasons we have

defined.

Therefore, to diagnose the physical processes responsible for B(T ′
o) and to test some of

our assumptions, we next carry out a simple modeling study. We will use a single column

variable-depth mixed layer model to attempt to reproduce the observed PDFs at OWS P,

determine whether this non-Gaussianity can again be modeled stochastically, and determine

if all terms in the mixed layer heat budget can be reasonably approximated by multiplicative

noise. This model clearly does not have advection terms (either in the ocean or atmosphere),

and does not include air-sea coupling, so their relative importance will be assessed by their
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absence.

5.1 Model description

The single column mixed layer model we use was developed by Gaspar (1988) and later used

by Alexander and Penland (1996) and Alexander et al. (2000), among many others. The

tendency of the mixed layer temperature To is given by

∂To

∂t
=

Qnet −Qswh

ρw Ch h
+

We∆T

h
+ CA− κ

h

∂T

∂z

∣∣∣
z=h

(23)

where ∆T = Tb−To (Tb is the temperature just below the mixed layer), Qnet is the net surface

energy flux into the ocean, Qswh is the penetrating solar radiation at the mixed layer depth

z = h, We is the entrainment rate, ρw and Ch are the reference density and specific heat

of sea water, κ is the vertical mixing coefficient, and z the vertical coordinate. Convective

adjustment (CA) occurs when the mixed layer is more dense than the layer below. Salinity

is set to climatology, since long time series of precipitation over the oceans, which strongly

influences salinity, are unavailable. The region beneath the mixed layer is represented by

a multi-layer system, where heat is redistributed through convective overturning, vertical

diffusion, and penetrating solar radiation. The model contains 30 unequally spaced layers

between the surface and 1000 m, where 15 layers are within the first 100 m in order to

adequately resolve the summer thermocline. A more detailed description of the model can

be found in Alexander et al. (2000).

The seasonally varying atmospheric forcing, based on 30 years of data from OWS P,

consists of three independent Markov models for anomalous air temperature, wind speed,

23



and solar radiation, while the dewpoint temperature anomaly mainly depends on the air

temperature anomaly. Note that these parameters are simulated as slightly red noise with

a decorrelation time scale of about 3 days. In addition, a second lower amplitude slower

red-noise (with a time scale of 28 days) is added to the temperature to simulate observed

slower variability associated with external forcing and/or air-sea coupling; there is no actual

air-sea coupling in this model. The anomalies are then added to the mean seasonal cycle

of their respective fields and used to compute the forcing fields for the mixed layer model.

The atmosphere and the ocean are integrated using a 1-hour time step in order to obtain

reasonable statistics for the atmospheric variables. The ocean is forced by the atmosphere

every time step. Further on we will use daily averaged ocean quantities to compare with the

daily averaged observations. The mixed layer model realistically simulates both the mean

and standard deviation of ocean temperature over the seasonal cycle. See Alexander and

Penland (1996) for details of the forcing and the modeled mean climatology at OWS P.

5.2 Results

5.2.1 PDFs and stochasticity

The model is run for 5000 yrs, which allows accurate determination of PDFs of daily SST

anomalies for each calendar month. Deviations from Gaussianity of the PDFs of daily

data grouped by each month, and also by extended winter (November-April) and extended

summer (May-October) seasons, are shown in Fig. 12. Comparison with the observed PDFs

(Fig. 2) shows that the mixed layer model simulates the non-Gaussianity of SST anomalies
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well throughout the months of November-April. However, modeled non-Gaussianity in the

months of May-October is generally weaker than is observed. This result does not appear

to be due to the relatively larger sample of model output, since subsampling the model

run yields similar results. The poorer summertime simulation could be due to an artificial

constraint on the mixed layer, which must always exist as a single layer and is not allowed

to be shallower than 10 m. Missing physics that may be particularly important during

summer, such as feedback between anomalous SST and clouds (e.g., Norris and Leovy 1994;

Klein et al. 1995; Norris 2000), could also contribute to biases found in the mixed layer

model. Therefore, we will focus upon the physical processes that drive non-Gaussianity

during extended winter.

The stochastic model [the effective drift Aeff (T
′
o) and noise B(T ′

o); see Eq. (19)] of ex-

tended winter SST anomalies from the mixed layer model, shown in Fig. 13, is generally

similar to the stochastic model constructed from observations (Fig. 8). The effective drift

of the simulated SST anomalies (Fig. 13a) is almost linear. As was the case for the observed

drift, the small departures from linearity of Aeff (T
′
o) cannot explain the non-Gaussianity of

the PDFs. Likewise, the noise (Fig. 13b) of the modeled SST anomalies shows the same

general state-dependent structure earlier found for observations, with the notable exception

that the minimum of B(T ′
o) is nearer to T ′

o = 0 than T ′
o = −1. Also shown in Fig. 13 are

the stochastic models determined separately for each month. The relatively minor month-

to-month variations of both the PDFs (Fig. 12) and stochastic terms justifies the use of the

extended winter in the observational analysis and suggests that observed non-Gaussianity

during the extended winter is not a result of seasonal variation of mean quantities and/or
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atmospheric noise forcing.

5.2.2 SST tendency budget

Since the mixed layer model reproduces the PDFs and the stochastic dynamics of the win-

tertime observations reasonably well, the SST tendency budget can be used to assess how

different physical processes contribute to the non-Gaussianity (i.e., skewness and kurtosis) of

anomalous SST variability. Following Alexander and Penland (1996) variables are split into

a daily mean (〈 〉) and a deviation from the mean (′). Assuming that the mixed layer depth

anomaly h′ is much smaller than the mean 〈h〉, a valid approximation for wintertime con-

ditions at OWS P, the anomalous mixed layer temperature tendency can be approximated

by

∂T ′
o

∂t
≈ Q′

net

ρw Ch 〈h〉
− 〈Qnet〉h′

ρw Ch 〈h〉2
−
(

Q′
neth

′

ρw Ch 〈h〉2
− 〈Q′

neth
′〉

ρw Ch 〈h〉2

)
+ E (24)

where E denotes all entrainment, overturning, and mixing effects. During the winter, the

anomalous mixed layer temperature (SST) tendency is predominantly due to net heat flux

anomalies, that is, the first term on the right hand side of (24) (Alexander and Penland

1996). Therefore, we can approximate (24) as

∂T ′
o

∂t
≈ Q′

net

ρw Ch 〈h〉
≡ f ′ (25)

where f ′ is the anomalous net heat flux.

The multiplicative noise characteristics of the anomalous net heat flux is clearly seen by

plotting f ′ as a function of the air-sea temperature anomaly difference, as shown in Fig. 14a.

While f ′ can be well fitted by a linear function with slope β [β(T ′
a−T ′

o); see line in Fig. 14a],
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the instantaneous f ′ values have a scatter around this line whose amplitude is not constant

but instead depends upon (T ′
a − T ′

o). That is, we can write (25) as:

∂T ′
o

∂t
= β(T ′

a − T ′
o) + η[(T ′

a − T ′
o)] (26)

where the amplitude of the residual η is a function of T ′
a−T ′

o. The tests used earlier in section

4.2 are again applied to demonstrate that η acts as multiplicative white noise. Interestingly,

the white noise approximation is somewhat better for observations than for the model output,

since η decorrelates on a time scale of about 3-5 days (cf. Fig. 6a), still far shorter than the

60-70 day timescale implicit in β. The redder residual may be due to the (uncoupled) model

atmosphere being somewhat too red; see, for example, Fig. 1 of Alexander and Penland

(1996).

If we approximate η[(T ′
a−T ′

o)] = (T ′
a−T ′

o)ηo, where ηo is Gaussian white noise, then (26)

becomes

∂T ′
o

∂t
= (β + ηo)(T

′
a − T ′

o) (27)

or

∂T ′
o

∂t
= −βT ′

o − ηoT
′
o + (βT ′

a + ηoT
′
a) (28)

That is, the net heat flux anomaly has the same form as in our simple model (see section 3).

Note that in the context of this model, where T ′
a is an external variable, both atmospheric

forcing terms βT ′
a and ηoT

′
a are “fast”, or stochastic, forcings because T ′

a rapidly varies with

a decorrelation time scale of about 3 days. Although the latter term is highly non-Gaussian,

it represents additive noise and thus has only minimal impact on the distribution of SST
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anomalies because of the Central Limit Theorem (see section 4.2). The state-dependent noise

term is linear multiplicative noise, as in our simple model [Eq. 11 and Fig. 8b]. However, it is

obvious from the scatter in Fig. 14a, as well as the earlier observational study, that although

approximating η as a linear multiplicative noise term captures much of its behavior, it is

better modeled as a non-linear state-dependent noise. Note also that the scatter in Fig. 14a,

which represents the multiplicative noise [cf. Eq. (27)], matches the term B(T ′
o) in Fig. 8b,

which includes both additive noise and multiplicative noise [cf. Eq. (28)]. Thus, as B(T ′
o)

has generally larger amplitude for positive SST anomaly, the scatter in Fig. 14a is greater

for negative T ′
a − T ′

o.

Finally, we determine how the individual component fluxes (sensible and latent heat

fluxes, and short and long wave radiation fluxes, shown in Fig. 14b-e) contribute to the

multiplicative nature of the total heat flux. The scatter of anomalous sensible heat flux

anomalies (Fig. 14b) most clearly demonstrates nearly linear multiplicative noise, with the

amplitude of the noise dropping to almost zero for Ta−To = 0 (that is, T ′
a−T ′

o ≈ 0.7). For the

latent heat flux (Fig. 14c), there is a similar minimum at Td − To = 0 (that is, T ′
a − T ′

o ≈ 3),

where Td is the dewpoint temperature. This minimum is shifted since 〈Td〉 < 〈Ta〉. Also,

since Td is not perfectly correlated with Ta, the scatter is never zero.

Note that the sensible heat flux actually represents almost piecewise linear multiplicative

noise; that is, linear multiplicative noise where the amplitude is different for positive and

negative values of Ta − To. This results from the bulk transfer coefficient having a larger

(constant) amplitude for unstable (Ta − To < 0) than stable (Ta − To > 0) conditions (Large

and Pond 1982). A similar effect exists for the latent heat flux. A second model run in which
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the stability dependence of the transfer coefficient is removed has its skewness reduced by

about 40%.

Some of the remaining skew results from the anomalous latent heat flux due to the

nonlinearity inherent to the Clausius-Clapeyron equation. For warmer SST (decreasing

T ′
a−T ′

o), relatively larger specific humidity anomalies give rise to larger amplitude latent heat

flux noise. Because of the exponential nature of the Clausius-Clapeyron relationship, this

suggests that (all other things being equal) regions with warmer SST could have increased

skewness.

Most of the remaining skew, however, is a consequence of mean state differences between

the ocean and atmosphere that results in noise terms like |U|′(〈Ta〉 − 〈To〉) and |U|′(〈qa〉 −

〈qs〉) within the anomalous surface heat flux. If the mean state differences were zero, these

terms would be zero and for constant transfer coefficients the scatter of the fluxes would be

symmetric around T ′
a − T ′

o = 0. Since these noise terms are not zero, they introduce the

asymmetry (noted above) that results in skew. Recall that this effect is more pronounced

in Fig. 14c since the latent heat flux is related to the dewpoint temperature Td and not the

atmospheric temperature Ta. This asymmetry is essentially a manifestation of correlated

noise; that is, portions of the additive and multiplicative noises are correlated because they

both depend upon the atmospheric noise |U|′.

Strictly speaking, the slow dynamics represented by A(T ′
o) also include the nonlinearity

in both the bulk transfer coefficients and Clausius-Clapeyron equation. However, as noted

above, this small deviation is not responsible for the modeled non-Gaussianity.
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The anomalous radiative terms are shown in Fig. 14d (short-wave) and Fig. 14e (long-

wave). Note that scatter of the anomalous long-wave heat flux is so small that it is masked

by the linear fit. Moreover, in this model there is no state-dependence for the short-wave

fluxes. Clearly, there are negligible radiative effects in the multiplicative noise B(T ′
o). In

conclusion, this model suggests that during extended winter anomalous SST variability at

OWS P is non-Gaussian largely as a result of multiplicative noise present in the sensible and

latent heat fluxes.

6 Summary and Discussion

In this paper we showed that distributions of daily SST anomalies at several Ocean Weather

Stations are non-Gaussian. Broadly speaking, the distributions have a stronger peak, weaker

flanks, and heavier tails than the related Gaussian distributions. With the exception of

OWS V, all have positive skew. We suggested that this observed non-Gaussianity can be

understood with a simple extension to the FH stochastic model of midlatitude SST anomalies,

accounting for the effect of rapid variability of surface winds (parameterized as noise) upon

both the surface heat flux and the surface heat flux derivative (with respect to SST). The

latter effect results in multiplicative noise and has been ignored in many simple stochastic

models (e.g., Frankignoul and Hasselmann 1977).

Our key point is that inclusion of this multiplicative noise term allows the FH model to

qualitatively reproduce not only an exponential autocorrelation function, but also the main

features of the observed distributions of SST anomalies. The model (counterintuitively)
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also predicts that this multiplicative noise can increase the persistence, predictability, and

low-frequency variability of midlatitude SST anomalies. That is, part of the observed auto-

correlation of SST anomalies is due to the noise-induced drift.

Details of the non-Gaussianity, and particularly the skew, do not require the determinis-

tic (slow dynamics) term A(T ′
o) to be nonlinear but do require the multiplicative noise term

B(T ′
o) to depart from linearity, as was found in both the inverse stochastic model and the

single column model. Our results suggest that even then much of this skew may be under-

stood by allowing B(T ′
o) to be piecewise linear and to include a correlated noise component.

An important underlying physical cause in both cases is the dependence of the noise on

boundary layer stability, since correlated noise depends upon mean stability and since the

bulk transfer coefficient is smaller for stable conditions (colder SST) than unstable conditions

(warmer SST). Increased positive skew, such as at OWS N, might then result from warmer

SST giving rise to increased low-level instability. Regions where latent heat flux is relatively

strong compared to the sensible heat flux, both due to warmer SST and/or drier air, should

also have greater positive skew because of both nonlinearity of the Clausius-Clapeyron equa-

tion and enhanced correlated noise. OWS V, however, displays negative skew, suggesting

that our model is incomplete. An obvious possibility is that ocean dynamics are more impor-

tant at this station (which is near the edge of the North Pacific current); another possibility

is that complex atmospheric dynamics and coupling between ocean and atmosphere in this

region cannot be ignored as in our simple model.

Earlier studie considering multiplicative noise forcing of SST (e.g., Neelin and Weng 1999)

suggested that changes in the SST anomaly could produce changes in atmospheric variability
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and thus in the forcing term f ′. Note that in our study, multiplicative noise forcing of the

mixed layer exists even if the atmosphere is not sensitive to changes in midlatitude SST.

Still, if atmospheric noise in (11) is a function of T ′
o, for example if

√
2M T ′

o is replaced with√
2M(T ′

o) T ′
o, then the multiplicative noise might no longer be linear. For example, recent

observational studies suggest state-dependence of boundary-layer fluxes due to positive local

(on scales smaller than 1000 km) correlation between SSTs and sea surface winds (Chelton

et al. 2004; O’Neill et al. 2003; Small et al. 2005; Xie 2004), perhaps because decreased

stability in the atmospheric boundary layer over warm (cold) SSTs increases (decreases) the

wind stress through enhanced (reduced) downward turbulent mixing of momentum. This is

another possible source of the small deviation of B(T ′
o) from linearity seen in Fig. 8b. Clearly,

though, any significant dependence of atmospheric noise upon the SST anomaly implies

the need for a stochastic coupled model, such as that employed by Barsugli and Battisti

(1998). They suggested that coupling enhances the thermal variance in the ocean and the

atmosphere by reducing the anomalous air-sea temperature difference. How surface wind

variability impacts their model is a focus of our current research; note that they considered

only thermal noise, whereas changes in wind variability due to the SST anomaly may require

non-local feedbacks and consideration of boundary layer stability.

We have also not considered forcing of midlatitude oceans, particularly the North Pacific,

by the atmospheric bridge that results from ENSO (e.g., Alexander et al. 2002; Newman et al.

2003a). Noise-induced drift could enhance the mean response to ENSO forcing (Sardeshmukh

et al. 2001), particularly where ENSO also increases high-frequency atmospheric variability

(Smith and Sardeshmukh 2000; Compo et al. 2001). For multivariate systems, external
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forcing can result in a skewed PDF even if the multiplicative noise term is linear (Sura et al.

2005).

Our results demonstrate that the high-frequency variability of boundary-layer winds and

related heat fluxes are crucial for understanding low-frequency anomalous SST variability.

That is, we see a scale interaction between the fast wind induced heat flux variability and the

slow SST variability. This scale interaction has implications for atmospheric forcing employed

in ocean models, suggesting that the high-frequency variability of boundary layer winds

and related surface fluxes must be accurately simulated to correctly model low-frequency

variability of SSTs. That is, a coupled model with incorrect atmospheric variability (i.e.,

noise) might incorrectly estimate SST variability and related atmosphere-ocean coupling. For

example, many atmospheric models (but not all) significantly underestimate wind variability

in the marine boundary layer (e.g., Gille 2005; Monahan 2005b,a). It is unclear how a bias

in wind variability (and related heat fluxes) contributes to biases found in many coupled

models. However, we have a powerful theory/tool at hand to systematically study this

problem. The results could guide the development of improved coupling schemes and the

implementation of stochastic parameterizations in climate models.

33



Acknowledgments. The authors wish to thank Drs. Adam Monahan and Birol Kara

and one anonymous reviewer whose comments greatly improved this paper. This work was

partially supported by a grant from NOAA CLIVAR/Pacific.

34



References

Alexander, M. A., I. Blade, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002:

The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction

over the global ocean, J. Climate, 14, 2205–2231.

Alexander, M. A., and C. Penland, 1996: Variability in a mixed layer ocean model driven

by stochastic atmospheric forcing, J. Climate, 9, 2424–2442.

Alexander, M. A., and J. D. Scott, 1997: Surface flux variability over the North Pacific and

North Atlantic oceans, J. Climate, 10, 2963–2978.

Alexander, M. A., J. D. Scott, and C. Deser, 2000: Processes that influence sea surface

temperature and ocean mixed layer depth variability in a coupled model, J. Geophys. Res.

Oceans , 105, 16823–16842.

Anteneodo, C., and C. Tsallis, 2003: Multiplicative noise: A mechanism leading to nonex-

tensive statistical mechanics, J. Math. Phys., 44, 5194–5203.

Azzalini, A., and A. Capitanio, 2003: Distributions generated by perturbations of symmetry

with emphasis on a multivariate skew t-distribution, J. R. Statist. Soc. B , 65, 367–389.

Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere-ocean thermal

coupling on midlatitude variability, J. Atmos. Sci., 55, 477–493.

Blaauboer, D., G. J. Komen, and J. Reiff, 1982: The behaviour of the sea surface temperature

(SST) as a response to stochastic latent- and sensible heat forcing, Tellus , 34, 17–28.

35



Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements

reveal persistent small-scale features in ocean winds, Science, 303, 978–983.

Compo, G. P., P. D. Sardeshmukh, and C. Penland, 2001: Changes of subseasonal variability

associated with El Niño, J. Climate, 14, 3356–3374.

Diaz, H. F., C. S. Ramage, S. D. Woodruff, and T. S. Parker, 1987: Climatic Summaries of

Ocean Weather Ships , Tech. rep., U.S. Department of Commerce (NOAA) and University

of Colorado (CIRES).

Dinsmore, R. P., 1996: Alpha, Bravo, Charlie... Ocean Weather Ships 1940-1980, Oceanus ,

39, 9–10.

Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II. Application

to sea-surface temperature anomalies and thermocline variability, Tellus , 29, 289–305.

Friedrich, R., S. Siegert, J. Peinke, S. Lück, M. Siefert, M. Lindemann, J. Raethjen,

G. Deusch, and G. Pfister, 2000: Extracting model equations from experimental data,

Phys. Lett. A, 271, 217–222.

Gardiner, C. W., 2004: Handbook of Stochastic Methods for Physics, Chemistry and the

Natural Science, Third Edition, Springer-Verlag, 415 pp.

Gaspar, P., 1988: Modeling the seasonal cycle of the upper ocean, J. Phys. Oceanogr., 18,

161–180.

Gille, S. T., 2005: Statistical characterization of zonal and meridonal ocean wind stress, J.

Atmos. Ocean. Tech., in press.

36
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Table 1: The Ocean Weather Stations (OWSs) used for this study.

OWS Location Period
P 50◦N, 145◦ W 1949–1981
N 30◦N, 140◦ W 1946–1974
V 34◦N, 164◦ E 1955–1971
K 45◦N, 16◦ W 1949–1975

Table 2: Parameters used to scale the heat flux equations for typical conditions at Ocean
Weather Station P.

Air density ρA = 1.225 Kg m−3

Sea-water density ρW = 1024 Kg m−3

Mixed layer depth h = 50 m
Inverse Bowen ratio B = 8
Bulk transfer coefficient CH = 1.5× 10−3

Specific heat of air Ca = 1004 J Kg−1 K−1

Specific heat of sea-water Ch = 4187 J Kg−1 K−1

Mean wind speed 〈|U|〉 = 8 m s−1

Anomalous wind speed (rms) |U|′ = 4 m s−1

Table 3: Parameters of linear inverse models for OWS P .

Parameter full-year extended summer extended winter
λeff [day−1] 0.0157± 0.0002 0.024± 0.0004 0.0167± 0.0003√

2M [day−1/2] 0.047± 0.006 0.045± 0.007 0.060± 0.008√
2D [K day−1/2] 0.144± 0.001 0.195± 0.003 0.117± 0.002
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a)

b)

Figure 1: The PDFs of SST anomalies (in K) at OWS P, related Gaussian distributions, and
deviations from Gaussianity. In (a) the PDF (steps) is calculated as a normalized histogram.
The dashed line is the related Gaussian distribution, whereas the boxes denote deviations
from Gaussianity. Note that the PDF has a strong peak, weak flanks, and heavy tails relative
to a Gaussian distribution (the PDF is kurtosed). Furthermore, the PDF is slightly skewed.
In (b) the PDF (solid line) is calculated as a MLE to a skew t-distribution. The dashed line
is the related Gaussian distribution, whereas the boxes denote deviations from Gaussianity.
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Figure 2: The PDFs of SST anomalies (normalized to make comparison possible) at locations
where stochastic theory is applicable: P, N , and V in the North Pacific, and K in the North
Atlantic (see Table 1 for the locations and recording periods). The PDFs (solid line) are
calculated as a MLE to a skew t-distribution. The dashed lines are the related Gaussian
distributions, whereas the boxes denote deviations from Gaussianity.
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a)

b)

Figure 3: (a) Autocorrelation function and (b) PDF of wind speed anomalies (m/s) at OWS
P.
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a) full-year

b) summer

c) winter

Figure 4: Stationary SST anomaly (in K) probability distributions p(T ′
o) [in the figure p(T ′

o) ≡
p(T ′)] for OWS P given by Eqs. (15) and (16) for (a) full-year, (b) extended summer, and (c)
extended winter conditions (together with the related Gaussian distributions and deviations
from Gaussianity as in Figs. 1 and 2). Note that the general structure of the analytically
derived PDFs is close to that of the observed ones (Figs. 1 and 2).
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a) full-year

b)

Figure 5: (a) Spectra of linearly modeled anomalous SST variability without and with muli-
plicative noise given by Eq. (14) for OWS P full-year conditions. The spectrum with pure
additive noise is indicated by the dashed line, and the spectrum with multiplicative noise in-
cluded is indicated by the solid line. It can be seen that the multiplicative noise enhances the
low-frequency variability of anomalous SST variability by about 20% (even as the total noise
variance increases only by about 8%). (b) The spectral densities ratios of the multiplcative
noise models to the additive noise models.
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a)

b)

Figure 6: a) Autocorrelation function and b) PDF of the residual r ≡ T ′
o Obs(t + ∆t) −

T ′
o(t + ∆t) for the SST anomalies at OWS P. Note that the autocorrelation is close to zero

after one time step (one day) and that the residual is highly non-Gaussian (very close to an
exponential distribution).
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a)

b)

Figure 7: The PDFs of concatenated SST anomalies (nondimensional), related Gaussian
distributions, and deviations from Gaussianity. In (a) the PDF (steps) is calculated as
a normalized histogram. The dashed line is the related Gaussian distribution, whereas the
boxes denote deviations from Gaussianity. Note that the PDF has a strong peak, weak flanks,
and heavy tails relative to a Gaussian distribution (the PDF is kurtosed). Furthermore, the
PDF is slightly skewed. In (b) the PDF (solid line) is calculated as a MLE to a skew t-
distribution. The dashed line is the related Gaussian distribution, whereas the boxes denote
deviations from Gaussianity.
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a)

b)

Figure 8: (a) The estimated effective drift Aeff (T
′
o) and (b) the estimated noise B(T ′

o) (in
the figure T ′

o ≡ T ′) for the concatenated SST anomalies (nondimensional). The error bars in
(a) indicate ± one standard error. The solid line in (a) shows the best linear fit. The dotted
line in (b) shows the optimal linear multiplicative noise obtained by fitting the variance and
the kurtosis of the PDF (Fig. 7) to the SDE (11).
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Figure 9: Noise-induced drift 1/2B(∂B/∂T ′
o) (solid line), deterministic drift A (dashed line),

effective drift Aeff (dotted line) for the concatenated SST anomaly record.
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Figure 10: Time of skillful forecast (defined as ρ∞ = 0.5) as a function of initial condition
for the additive noise model (dashed line) and the multiplicative noise model (solid line).
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Figure 11: Spectra of nonlinearly modeled anomalous SST variability without and with
muliplicative noise. The spectrum with pure additive noise is indicated by the dashed line,
and the spectrum with multiplicative noise included is indicated by the solid line. It can be
seen that the multiplicative noise enhances the low-frequency variability of anomalous SST
variability by about 100% (even as the total noise variance increases only by about 30%).
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a)

b)

Figure 12: Monthly PDF anomalies of normalized daily SST anomalies for (a) extended
winter (black solid line) and individual months (thin colored lines) and (b) for extended
summer (black solid line) and individual months (thin colored lines) from the mixed layer
model. The PDFs are calculated as normalized histograms.
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a)

b)

Figure 13: (a) The estimated effective drifts Aeff (T
′
o) and (b) the estimated noises B(T ′

o)
(in the figure T ′

o ≡ T ′) of extended winter SST anomalies (thick black lines) and individual
months (thin colored lines) from the mixed layer model.
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a)

b) c)

d) e)

Figure 14: Scatter plots and the related linear fits of the following wintertime anomalous
heat flux terms (in 10−6 K s−1) from the mixed layer model as a function of the anomalous
air-sea temperature difference (TAIR’-SST’): (a) anomalous net heat flux, (b) anomalous
sensible heat flux, (c) anomalous latent heat flux, (d) anomalous short-wave radiation flux,
(e) anomalous long-wave radiation flux (the scatter of the anomalous long-wave heat flux is
so small that it is masked by the linear fit).
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